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Micro and Nanofabrication (MEMS)

● Hydrofluoric acid + nitric acid + 
acetic acid bath (‘HNA’ bath)

for Si etching

Isotropic etching of Si

𝐻𝐻𝐹𝐹 + 𝐻𝐻𝑁𝑁𝑂𝑂3 + 𝐶𝐶𝐶𝐶3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴

What is the role of 
these 3 compounds?



Micro and Nanofabrication (MEMS)

● Overall reaction

Chemical reactions

OHHNOSiFHHFHNOSi 22623 2262 ++→++



Micro and Nanofabrication (MEMS)

● Overall reaction

● In acidic media, the Si etching process first involves hole injection into the Si 
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Micro and Nanofabrication (MEMS)

● 𝑆𝑆𝑆𝑆2+ combines with 𝑂𝑂𝐻𝐻−

● Generation of 𝑆𝑆𝑆𝑆𝑂𝑂2 with release of 𝐻𝐻2𝑂𝑂
Overall oxidation reaction

Chemical reactions

𝑆𝑆𝑆𝑆2+ + 2𝑂𝑂𝑂𝑂− → 𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂 2
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● Generation of 𝑆𝑆𝑆𝑆𝑂𝑂2 with release of 𝐻𝐻2𝑂𝑂
Overall oxidation reaction

● Next follows the dissolution of the oxide by HF

● Acetic acid (𝐶𝐶𝐶𝐶3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) is a diluting agent (also water can be used) 

Chemical reactions

𝑆𝑆𝑆𝑆2+ + 2𝑂𝑂𝑂𝑂− → 𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂 2

𝑆𝑆𝑆𝑆 + 2𝐻𝐻𝐻𝐻𝑂𝑂3 → 2𝐻𝐻𝐻𝐻𝑂𝑂2 + 𝑆𝑆𝑆𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆𝑂𝑂2 + 6𝐻𝐻𝐻𝐻 → 𝐻𝐻2𝑆𝑆𝑆𝑆𝐹𝐹6 + 2𝐻𝐻2 𝑂𝑂

H2SiF6 is called 
fluorosilisic acid. Why 
an acid?



Micro and Nanofabrication (MEMS)

Ternary diagram for HNA bath

● The concentration of the three basic 
components HF, HNO3, and H2O, 
are plotted along one of the axes

● A point in the triangle corresponds to 
a unique composition of the bath

● One can attribute to each point a 
physical property of the bath with
that respective composition, e.g. the 
etching rate

● Iso-etch curves can be plotted0
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Why is ‘pure’ HF only 
49%?



Micro and Nanofabrication (MEMS)

● For high HF concentration, the iso-etch
curves are parallel to the lines of 
constant HNO3 and HNO3 controls the 
etching rate (oxidation process is
limiting)

● For high HNO3 concentration, the iso-
etch curves are parallel to the lines of 
constant HF and HF controls the 
etching rate (removal of the oxide is
limiting)

● Maximum etch rate when HNO3 and HF 
are equilibrated and when H2O 
concentration is low

Iso-etch curves
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Micro and Nanofabrication (MEMS)

● As planes are characterized by vectors (of the 
reciprocal lattice), the angle between two planes can
be calculated using the vector in-product

● Example: angle ϕ between the planes (111) and (001) 
is 

Si crystal planes
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Micro and Nanofabrication (MEMS)

● A Si atom located in a certain plane is 
differently ‘anchored’ to the back of the 
substrate and has a different number of 
dangling bonds that are in contact with 
the etching solution

● This can give rise to plane-dependent 
etching rates

● Example: a (111) plane will etch much 
slower than a (100) plane in an alkaline 
etching bath

Origin of etching anisotropy in alkaline bath like
KOH

Si atom in (111) plane 
has  3 backbonds and 
1 dangling bond

etching solution etching solution

Si atom in (100) plane 
has  2 backbonds and 
2 dangling bonds

Why an acid bath gives isotropic etching, while an alkaline bath 
gives anisotropic etching?





Micro and Nanofabrication (MEMS)

Anisotropic etching profiles
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Micro and Nanofabrication (MEMS)

Bulk micromachining

KOH etching of a (100) wafer with rectangular
mask oriented along the in-plane <110> direction

K salt deposition After neutralisation with HCl
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Micro and Nanofabrication (MEMS)

Bulk micromachining

KOH etching of (100) wafers with arbitrary
maskunderetching of the mask and 
formation of inverted pyramids or ‘roofs’
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> 

mask opening
35.26º

(111)

<110>

(111) (111)(111)
(100)

Why is there a 
pyramidal hole etched?



Micro and Nanofabrication (MEMS)

Bulk micromachining

KOH etching of (100) wafer with U-shaped
mask

mask opening

weakly bonded Si atoms

(100) (111)

SiO2 mask
Si

[110]

Si

SiO2 mask

35.26º

(111)

<110>

(111) (111)(111)
(100)



Micro and Nanofabrication (MEMS)

Bulk micromachining

KOH etching of (100) wafer with U-shaped
mask underetching of the mask and 
formation of inverted pyramids or ‘roofs’ with
suspended mask beams

mask opening
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SiO2 mask
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Micro and Nanofabrication (MEMS)

Bulk micromachining

mask opening

<1
10

> 

KOH etching of (100) wafer with U-shape type 
maskunderetching of the mask and 
formation of suspended mask (SiO2) beams35.26º
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<110>

(111) (111)(111)
(100)



Micro and Nanofabrication (MEMS)

● A high temperature aggressive chemical 
etching process can be replaced by an 
electrochemical procedure utilising a 
milder solution, thus allowing a simple 
photoresist mask to be employed

● Oxidation can be promoted by a 
positive voltage bias applied to the p-Si 
causing an accumulation of holes h+ in 
the Si at the Si/electrolyte surface

● No need for HNO3, 5% HF solution can 
be used for etching

Isotropic etching of p-doped Si with electrical bias

p-doped Si

Si wafer electrical 
contact

+

electrical contact 
to HF solution

-



Micro and Nanofabrication (MEMS)

● Applying a positive voltage bias to an n-
Si wafer causes a depletion of electrons 
e- in the Si at the Si/electrolyte interface

● No etching occurs, except when the 
voltage is so high that electrical
breakdown occurs, transporting h+ to 
the interface

Situation of n-doped Si with electrical bias

n-doped Si

Si wafer electrical 
contact

+

electrical contact 
to HF solution

-

e--depletion zone



Micro and Nanofabrication (MEMS)

● Applying a positive voltage bias to the 
n-Si causes a depletion of electrons e-

in the Si at the Si/electrolyte surface
● Applying light generates e- - h+ pairs in 

the depletion region
● Electrons e- are transported to the 

positive voltage
● Holes h+ at the surface promote

oxidation
● Etching occurs

Etching n-doped Si with electrical bias and light

n-doped Si

Si wafer electrical 
contact

+

electrical contact 
to HF solution

-



Micro and Nanofabrication (MEMS)

● At iMAX and higher, bright electro-polishing 
occurs. HF is depleted at the surface and a 
high concentration of holes builds up at the 
interface 

● Positive voltage: Si etching
● Negative voltage: hydrogen generation
● At iCRIT, there is partial dissolution of Si. This 

leads to formation of rough and porous Si. 
Condition: low current densities, i.e. limiting 
the oxidation of Si due to hole deficiency

Current-voltage characteristics

(after Levy-Clement, Electrochem. Acta 37, 877 (1992))

IMAX

ICRIT

Negative voltage: 
hydrogen generation Positive voltage: Si etching

p-type silicon cathodic anodic

cu
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with light
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● At iMAX and higher, bright electro-polishing 
occurs. HF is depleted at the surface and a 
high concentration of holes builds up at the 
interface 

● Positive voltage: Si etching
● Negative voltage: hydrogen generation
● At iCRIT, there is partial dissolution of Si. This 

leads to formation of rough and porous Si. 
Condition: low current densities and light 
intensity, i.e. limiting the oxidation of Si due 
to hole deficiency

Current-voltage characteristics

(after Levy-Clement, Electrochem. Acta 37, 877 (1992))

IMAX

ICRIT

Negative voltage: 
hydrogen generation Positive voltage: Si etching

p-type silicon cathodic anodic
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Micro and Nanofabrication (MEMS)

● Pore sizes in diameter from 2 nm to 10 µm are 
possible

● Very high-aspect ratio (250) pores maintained 
over several mm distance

● For currents below iMAX, a dense network of fine 
holes forms: microporous Si (pore size 2-20 nm)

● Macropores (size up to 10 µm) have been 
reported for n-type Si under high anodic 
voltage(>10 V) and low current density

● Macropore formation is a self-adjusting 
mechanism with holes h+ kept on a pore tip by 
the electrical field

Porous n-type Si

h+

Electrical
field lines
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